
Transcranial Magnetic Stimulation

Session 4 - Virtual Lesion Approach I

Alexandra Reichenbach MPI for Biological Cybernetics Tübingen, Germany

Today's Schedule

Virtual Lesion Approach : Study Design

- Rationale
- Measurements
- Temporal modes
- Spatial modes
- Coil placement
- Stimulation intensity
- Control conditions

Virtual Lesion Approach: Overview

Virtual lesion (Walsh & Rushworth, 1999):

Mimic a brain lesion temporarily in a circumscribed area without cortical re-organization.

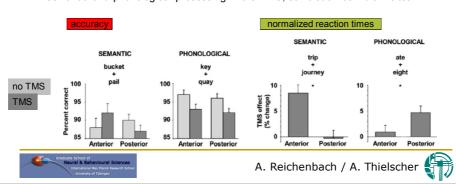
Use TMS pulses to interfere temporarily with the neural processing in the stimulated area while the subject is performing a behavioral task.

Effects of TMS on reaction times or error rate indicate that the stimulated area is crucially involved in the task.

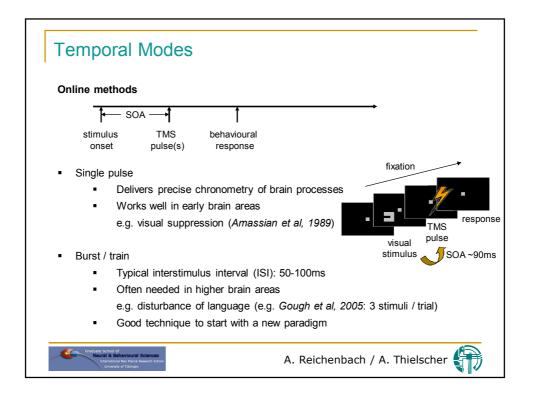
With the virtual lesion approach, TMS is a tool for neuroscience which allows to disentangle the necessity of brain regions for a specific task compared to the mere involvement of it (causality vs. correlation). Furthermore, this methodology can be used to measure the chronometry of neural information processing.

A. Reichenbach / A. Thielscher

Measurements


Error rates

• Mainly used in early areas, e.g. visual suppression


performance 100% 80% 60% 40% 70 80 90 100 TMS pulse delay [ms]

Reaction times

- Mainly used in higher areas
- Error rates are often not sensitive enough, e.g. Gough et al, 2005:
 semantic and phonological processing in the LIFC, stimulation at 2 brain sites

Temporal Modes Repetitive TMS Deliver TMS stimulation for several minutes (e.g. up to 30min) (see also rTMS in M1) low frequency (1-3 Hz) → decrease in cortical activity (lasts 3-30 minutes) sometimes: high frequency (> 5Hz) → increase in cortical activity TMS, e.g. 30min behavioural task Pre-post design (blocked) with all pitfalls of a pre-post design (time-, learning-, attention effects, fatigue, etc.) Sham/verum-post design (blocked) "Interleaved" TMS (Campana et al, 2002) Investigate consolidation of events, priming, or short-term memory behav. TMS behav. TMS behav. trial 1 interval trial 2 interval A. Reichenbach / A. Thielscher

Temporal Modes - Comparison (Mochizuki et al, 2005) direct comparison of two protocols: role of dorsal premotor area in reaction task task: contract left or right hand as fast as possible dependent on pitch of a tone **7** RT of <u>right</u> hand **7** error rate **₹** RT of <u>both</u> hands no effect on error rate A. Reichenbach / A. Thielscher

Temporal Modes - Comparison

Conclusion from Mochizuki et al, 2005:

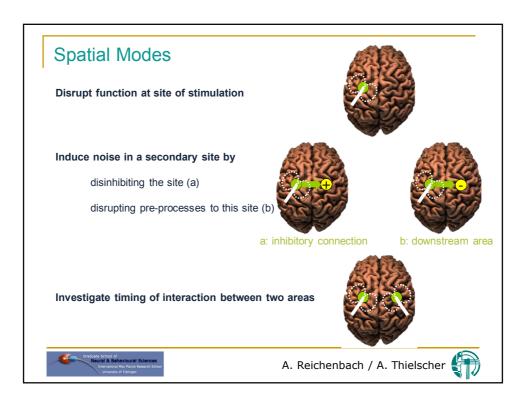
Online methods

→ When is the function of a cortical area essential for a behavioural task?

Repetitive TMS

- Widespread changes in activity
- More complex effects on behaviour
- → Hypothesis: give insight into changes that might occur after brain injury

Repetitive TMS


Online methods

- + no direct interference from TMS pulse + high temporal resolution (startle, coil click, muscle twitch) no temporal resolution

 - possible interference from TMS side effects (startle, coil click, muscle twitch)

Spatial Modes - Some Remarks

Most commonly it is assumed that the function at site of stimulation is disrupted. This approach needs a hypothesis based on anatomy.

Think of possible effects from secondary sites when observing "strange" effects.

Interleaved TMS/fMRI as tool to disentangle TMS effect on different brain sites.

Beware of rash conclusions when observing improvement of function! Alternative explanations can be

- Motor facilitation
- Intersensory facilitation (coil click, somatosensory stimulation)

Coil Placement

Relative to "hand knob" or inion

 e.g. Desmurget et al, 1999: 4.5cm caudal and 0.5cm medial from "hand knob" (determined with TMS) to reach the posterior parietal cortex (PPC)

 e.g. Amassian et al, 1989: round coil placed at the midline with lower edge approximately 2cm above the inion to reach early visual areas

International 10-20 EEG system

- F3 and F4 → dorsolateral prefrontal cortex
- P3 and P4 → around the intraparietal sulcus
- Interindividual precision about 2cm (Herwig et al, 2003)

Coil Placement

TMS localizer

- Using a "hunting procedure" (Ashbridge et al, 1997), like "hotspot" search in M1
- Use same task as in the experiment (e.g. visual suppression)
- Use a special "localizer task"
 - e.g. a visual search paradigm to identify the right PPC for a spatial neglect study (Bjoertomt et al, 2002)
 - e.g. moving phosphenes to identify hMT/V5+

Pitfalls of a special "localizer task"

- Localizer task might work not in all subjects (e.g. moving phosphenes can be elicited only in a small number of participants (Pascual-Leone & Walsh, 2001))
- Location criterion might not be specific for the intended region (e.g. moving phosphenes can also result from stimulation at other cortical sites (Fernandez et al, 2002)

Coil Placement

Neuronavigation

- "Gold standard"
- Precision 2-3mm
- Anatomical MR scan: individual anatomy
- Initial referencing procedure is crucial for precision

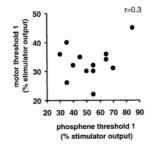
IR tracking cameras

- Individual anatomical landmarks
- fMRI localizer: individual functional anatomy
- TMS localizer

neuronavigation software, e.g. BrainView

A. Reichenbach / A. Thielscher

Stimulation Intensity


Problem: Magnetic field strength depends on stimulator + coil combination.

→ no standard measurement available

intensity often used for visual areas: x% of individual's phosphene threshold intensity most often used for higher areas: x% of individual's rMT

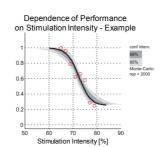
BUT: within subject's the excitability of brain areas is quite variable: no correlation between motor and phosphene threshold (Stewart et al, 2001)

The same intensity may as well be used for all subjects.

Stimulation Intensity

Alternative ways to determine the stimulation intensity

Rationale:


The higher the intensity the bigger the effect
BUT also possible side effects and the discomfort for the subject.

Mapping of performance to stimulation intensity

- high efford, paradigm has to be known well
- advantage: intensity can be adjusted well to fit a desired performance level

Use highest possible intensity without side effects

avoid M1 stimulation if task is motor related

A. Reichenbach / A. Thielscher

Control Conditions

Control for "general" or unwanted TMS effects!

Sham stimulation

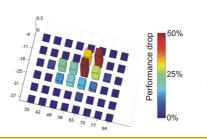
- sham coil: only "click", no current
- normal coil perpendicular to skull
- drawback: no peripheral stimulation

!!! use of control sites (see below) is sometimes also called "sham stimulation" !!!

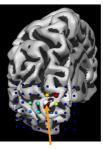
"click" no current

Vertex stimulation

- vertex: most superior point of the skull (CZ)
- some peripheral stimulation with small brain stimulation
- drawback: less uncomfortable / disturbing


Control Conditions

Stimulation of contralateral hemisphere


- feasibility depends on the kind of task (lateralization)
 e.g. usable for early visual areas, or language studies
- controls for TMS discomfort

Stimulation of adjacent sites / grid / mapping

gain spatial resolution

example: visual suppression mapping

center of mass (CoM)

A. Reichenbach / A. Thielscher

Control Conditions

Timing

- also stimulate at earlier or later timepoints
- unrecognizable for the subject (if the timepoints are not too distant!)
- needs precise timing but also delivers chronometry

performance 80% 60% 70 80 90 100 TMS pulse delay [ms]

Control task

- both tasks have to be matched in difficulty
- e.g. Ellison et al, 2007: visual search conjunction paradigms colour/orientation vs. motion/orientation
- e.g. Gough et al, 2005: semantic vs. phonological task
- in combination with stimulation at two different sites allows for double dissociation of the task specific processes and the tested brain sites

